If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.5x^2-8800=0
a = .5; b = 0; c = -8800;
Δ = b2-4ac
Δ = 02-4·.5·(-8800)
Δ = 17600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17600}=\sqrt{1600*11}=\sqrt{1600}*\sqrt{11}=40\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{11}}{2*.5}=\frac{0-40\sqrt{11}}{1} =-\frac{40\sqrt{11}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{11}}{2*.5}=\frac{0+40\sqrt{11}}{1} =\frac{40\sqrt{11}}{1} $
| -4/7u=16 | | 40y=80 | | 19h=608 | | 1.5=1.06^4x | | 3n−3(6−2n)=27 | | .3n-2=67 | | 2(36)+y=72 | | -7/2*y=35 | | -7/2•y=35 | | x–8=13 | | (4y-3)=(3y+1) | | -7/2y=35 | | (4x+6)=(7x-3) | | 4(2y+7)-(y+13=-20 | | 5u/4=-10 | | (4y-3)+(3y+1)=180 | | f-63=-23 | | -10=-2/5w | | 3(2-z)/2=-2 | | -10=-2/5•w | | (4x+6)+(7x-3)=180 | | X+14=(x)3+5 | | 4y=3y–5 | | 4. 4y=3y–5 | | 7x-5=3x+11=x= | | X+14=x3+5 | | -3(3x+5)=30 | | 24+-24+60x=0+-24-60x-24 | | 9-7x-8x=5x+7-6 | | 1/3=y/12 | | 3xx2x=150 | | 2b+10=28 |